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Abstract. We investigate η-η′ mixing in infrared regularized U(3) chiral perturbation theory by calculating
the η and η′ masses up to one-loop order. From this analysis it becomes obvious that even at leading order
η-η′-mixing does not obey the usually assumed one-mixing-angle scheme if large Nc counting rules are not
employed.

PACS. 12.39.Fe Chiral Lagrangians – 14.40.-n Mesons

1 Introduction

The η-η′ mixing has been the subject of many investiga-
tions, see, e.g., [1–14]. Both particles can be described as
mixtures of the octet component η8 and its singlet coun-
terpart η0. The η8, which is a member of the octet of the
pseudoscalar mesons (π,K, η8), differs from the singlet η0

in a substantial way: it is a Goldstone boson whose mass
vanishes in the limit of zero quark masses, while the η0 is
not due to the axial U(1) anomaly.

Phenomenologically, however, the situation for the η-η′
mixing still remains to be settled. Most of the investiga-
tions on this subject introduce one single mixing angle
and extract a value from different kinds of data. These
are, e.g., the anomalous η, η′ decays, η, η′ → γγ [1,2], de-
cays of J/Ψ [3–5], electromagnetic decays of vector and
pseudoscalar mesons [6], only to name a few. The values
obtained in these investigations range from −13◦ [6] to
−22◦ [2]. On the other hand, the Gell-Mann–Okubo mass
formula for the pseudoscalar mesons yields a mixing angle
of −10◦ [7].

More recently, a two-mixing-angle scheme has been
proposed by Kaiser and Leutwyler [8–10] for the calcu-
lation of the pseudoscalar decay constants in large Nc

chiral perturbation theory. The two-angle scenario has
been adopted in a phenomenological analysis on the two-
photon decay widths of the η and η′, the ηγ and η′γ tran-
sition form factors, radiative J/Ψ decays, as well as on
the decay constants of the pseudoscalar mesons [11,12].
The authors observe that within their phenomenological
approach the assumption of one mixing angle is not in
agreement with experiment, whereas the two-mixing-angle
scheme leads to a very good description of the data. These

a e-mail: nbeisert@physik.tu-muenchen.de
b e-mail: borasoy@physik.tu-muenchen.de

two different mixing angles have been interpreted as one
energy-dependent η-η′ mixing angle in [13], where electro-
magnetic couplings between lowest-lying vector and pseu-
doscalar mesons were studied. As pointed out in these in-
vestigations, the analysis with two different mixing angles
leads to a more coherent picture than the canonical treat-
ment with a single angle. In particular, the calculation of
the pseudoscalar decay constants within the framework of
large Nc chiral perturbation theory requires two different
mixing angles [8]. (A similar investigation was performed
in [14] but with a different parametrization.)

Recently, it has been shown in [15] that the η′ can
be included in a systematic way in chiral perturbation
theory without employing 1/Nc counting rules. The loop
integrals are evaluated using infrared regularization, which
preserves Lorentz and chiral symmetry [16]. However, in
[15] it was assumed that the η-η′ mixing follows at lowest
order in symmetry-breaking the one-mixing-angle pattern,
i.e. the mixing is described only by one mixing angle and
its value was assumed to be −20◦.

The purpose of this work is to critically investigate η-η′
mixing up to one-loop order in infrared regularized U(3)
chiral perturbation theory which provides a systematic
counting scheme. Within this approach, loops start con-
tributing at next-to-leading order while they are a next-to-
next-to-leading order effect in large Nc chiral perturbation
theory.

We start in the next section by presenting the effective
Lagrangian and η-η′ mixing at lowest order. The next-
to-leading order calculation within this counting scheme
including one-loop diagrams is presented in sect. 3. We
also compare this approach with a scheme that takes only
loops with Goldstone bosons into account omitting any
propagation of an η′ inside the loop. Section 4 contains
our results and we conclude with a summary in sect. 5.
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2 η-η′ mixing at leading order

In this section, we present η-η′ mixing at lowest order
in the framework of infrared regularized U(3) chiral per-
turbation theory. Note that we do not make use of 1/Nc

counting rules. The effective Lagrangian for the pseu-
doscalar meson nonet (π,K, η8, η0) reads, up to second
order in the derivative expansion [9,10,15]1,

L(0+2) = −V0 + V1〈DµU†DµU〉 + V2〈U†χ + χ†U〉
+iV3〈U†χ − χ†U〉 + V4〈U†DµU〉〈U†DµU〉
+iV5D

µθ〈U†DµU〉 + V6D
µθDµθ, (1)

where U is a unitary 3×3 matrix containing the Goldstone
boson octet (π,K, η8) and the η′. Its dependence on η8 and
η0 is given by

U =exp
(
diag(1, 1,−2) · iη8/

√
3f+i

√
2η0/

√
3f+. . .

)
. (2)

The expression 〈. . . 〉 denotes the trace in flavor space,
f is the pion decay constant in the chiral limit and the
quark mass matrix M = diag(mu,md,ms) enters in the
combination χ = 2BM, with B = −〈0|q̄q|0〉/f2 being the
order parameter of the spontaneous symmetry violation.
The external field θ is the QCD vacuum angle, which will
be set to zero throughout this discussion. The covariant
derivatives are defined by

DµU = ∂µU − i(vµ + ãµ)U + iU(vµ − ãµ) ,

Dµθ =

√
6λ

f
∂µθ + 2〈ãµ〉. (3)

They are defined in such a way that all the dependence on
the running scale of QCD due to the anomalous dimension
of the singlet axial current A0

µ = 1
2 q̄γµγ5q is absorbed

into the prefactor
√

λ, cf. [15] for details. Due to its scale
dependence,

√
λ cannot be determined from experiment,

and all quantities involving it are unphysical. The axial-
vector connection ãµ is defined as

ãµ = aµ +

√
6λ − f

3f
〈aµ〉. (4)

which is the scale-independent combination of the octet
and singlet parts of the external axial-vector field aµ.

For θ = 0 the coefficients Vi are functions of η0,
Vi(η0/f), and can be expanded in terms of this variable.
At a given order of derivatives of the meson fields U and in-
sertions of the quark mass matrix M, one obtains an infi-
nite string of increasing powers of η0 with couplings which
are not fixed by chiral symmetry. Parity conservation im-
plies that the Vi are all even functions of η0 except V3,
which is odd, and V1(0) = V2(0) = V1(0) − 3V4(0) = 1

4f2

gives the correct normalizaton for the quadratic terms of
1 If one prefers, one can transform the V5 term away. Here

we keep it for completeness.

the mesons. The potentials Vi are expanded in the singlet
field η0

Vi

[η0

f

]
= v

(0)
i + v

(2)
i

η2
0

f2
+ v

(4)
i

η4
0

f4
+ . . .

for i = 0, 1, 2, 4, 5, 6 ,

V3

[η0

f

]
= v

(1)
3

η0

f
+ v

(3)
3

η3
0

f3
+ . . . , (5)

with expansion coefficients v
(j)
i to be determined phe-

nomenologically. In the present investigation we work in
the isospin limit mu = md = m̂ and, therefore, only η-η′
mixing occurs. One observes terms quadratic in the me-
son fields that contain the factor η0η8. Such terms arise
from the explicitly chiral symmetry-breaking operators
V2〈U†χ + χ†U〉 + iV3〈U†χ − χ†U〉 and read

−8
√

2
3f2

(
1
4f2 − 1

2

√
6v

(1)
3

)
B(m̂ − ms)η0η8. (6)

However, these are not the only η0-η8 mixing terms arising
at second chiral order. Terms from L(4), the Lagrangian
at fourth chiral order, which is presented in Appendix A,
will also contribute to the mass matrix at second chiral
order. This can be seen as follows. Consider the terms in
L(4) with one or two derivatives of the singlet field and an
insertion of the quark mass matrix χ. They are given by
[15,17]

L(4) = . . . +
2

3f2
(3β4 + β5 − 9β17 + 3β18)

·e−i
√

6η0/(3f)Dµη0D
µη0〈Û†χ〉 + h.c.

+
i
√

6
3f

(2β5 + 3β18)e−i
√

6η0/(3f)Dµη0〈DµÛ†χ〉

+h.c. + . . . , (7)

where we have kept the notation from [15] and Û =
(det U)−1/3U contains only Goldstone boson fields. The βi

are functions of the singlet field η0 and can be expanded as
in eq. (5). They contribute to the part of the effective La-
grangian quadratic in the η8 and η0 which has the generic
form

L = 1
2∂µηi

(
δij + K

(2)
ij

)
∂µηj − 1

2ηi

(
M

(0)
ij + M

(2)
ij

)
ηj , (8)

i, j = 0, 8 ,

where the superscripts for the matrices K and M denote
the chiral power. (We restrict ourselves to the η-η′ sys-
tem since pions and kaons decouple in the isospin limit.)
Choosing K and M in a symmetric form, one obtains from
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eqs. (1) and (7) the non-vanishing coefficients

M
(0)
00 =

◦
m2

0 ,

M
(2)
88 =

◦
m2

8 + 1
2

◦
m2

∆ ,

M
(2)
08 = −2

√
2ṽ

(1)
2

◦
m2

∆

/
f2 ,

M
(2)
00 = 4ṽ

(2)
2

◦
m2

8

/
f2 ,

K
(2)
08 = −4

√
2β5,18

◦
m2

∆

/
f2 ,

K
(2)
00 = 8β4,5,17,18

◦
m2

8

/
f2 . (9)

Here we have made the following abbreviations for com-
binations of constants that repeatedly occur:

◦
m2

0 =
2v

(2)
0

f2
,

◦
m2

8 = 2
3B(2m̂ + ms) ,

◦
m2

∆ = 4
3B(ms − m̂) ,

ṽ
(1)
2 = 1

4f2 − 1
2

√
6v

(1)
3 ,

ṽ
(2)
2 = 1

4f2 −
√

6v
(1)
3 − 3v

(2)
2 ,

β5,18 = β
(0)
5 + 3

2β
(0)
18 ,

β4,5,17,18 = 3β
(0)
4 + β

(0)
5 − 9β

(0)
17 + 3β

(0)
18 . (10)

The mass of the η′ in the chiral limit is denoted by
◦
m0,◦

m2
8 is the mean mass squared of the octet,

◦
m2

∆ describes
the mass splitting of the octet. Both combinations ṽ

(1)
2

and ṽ
(2)
2 approach 1

4f2 in the large Nc limit. The scale
dependence of the renormalized βi parameters cancels in
the combinations β5,18 and β4,5,17,18.

The wave functions must be renormalized in order to
acquire the canonical form for the Lagrangian

L = 1
2∂µη∂µη + 1

2∂µη′∂µη′ − 1
2

◦
m2

ηη2 − 1
2

◦
m2

η′η′2. (11)

To second order this is achieved by the transformation
(η8, η0)T = (1 + R

(2)
0 )(η, η′)T , with

1 + R
(2)
0 =

(
1 M

(2)
08

/
M

(0)
00 − K

(2)
08

−M
(2)
08

/
M

(0)
00 1 − 1

2K
(2)
00

)
. (12)

The off-diagonal elements of this transformation describe
mixing between the fields η and η′. Even in leading order
the two off-diagonal elements are different in contradis-
tinction to large Nc chiral perturbation theory (cf. [9,17]),
where the sum of both off-diagonal elements vanishes in
leading order. There the term K

(2)
08 is of higher order than

M
(2)
08 /M

(0)
00 and it is justified to use just one mixing angle.

In our approach we have two different off-diagonal ele-
ments which leads directly to two different mixing angles.

The two off-diagonal elements are not the two mixing
angles occurring in the pseudoscalar decay constants of the

η and the η′, although they are closely related. In leading
order the ηi fields couple to ãµ

i with strength f for i = 8
and f0 =

√
6λ(1 + 6v

(0)
5 /f2) for i = 0, see eq. (26). After

the transformation to η, η′ fields the coupling matrix can
be written as diag(f, f0)(1 + R

(2)
0 ). We will see later that

there are also loop corrections to the coupling matrix in
second chiral order, however, R

(2)
0 involves two amplitudes

and two mixing angles already at tree level. For the full
results, see eqs. (28) and (29).

Note also that (1 + R
(2)
0 ) in eq. (12) is not the com-

plete wave function renormalization to second chiral order;
there are corrections from loops and LECs which are pre-
sented in the next section. However, they do not affect the
masses at this order and could be dropped so far. The full
matrix is given in eq. (22).

After the transformation the masses can be read off
from the Lagrangian, they are given by

◦
m2

η = M
(2)
88 and

◦
m2

η′ = M
(0)
00 + M

(2)
00 − M

(0)
00 K

(2)
00 . Expressed in U(3) pa-

rameters the masses at second chiral order are

◦
m2

π =
◦
m2

8 − 1
2

◦
m2

∆ ,

◦
m2

K =
◦
m2

8 + 1
4

◦
m2

∆ ,

◦
m2

η =
◦
m2

8 + 1
2

◦
m2

∆ ,

◦
m2

η′ =
◦
m2

0 +
4
f2

◦
m2

8

(
ṽ
(2)
2 − 2

◦
m2

0β4,5,17,18

)
, (13)

where we have included the π and K masses for com-
pleteness. Note that the Gell-Mann–Okubo mass relation
is satisfied in leading order.

3 Inclusion of loops

We proceed by investigating η-η′ mixing in the calcula-
tion of the η and η′ masses at next-to-leading order. To
this order contributions both from one-loop graphs and
higher-order contact terms must be taken into account.
The fourth-order Lagrangian is given by

L(4) =
∑

k βkOk, (14)

where the fourth-order operators are given in Appendix
A. In the present work the contributing operators Ok

are those with k = 0, . . . , 8, 12, 13, 14, 15, 25, 26. We have
decided to include the β0 term, although there is a
Cayley-Hamilton matrix identity that enables one to re-
move the term leading to modified coefficients βi, i =
1, 2, 3, 13, 14, 15, 16 [17]. (It is actually more convenient to
eliminate one of the OZI-violating terms β14, β15 or β16,
see [18].) Here we do not make use of the Cayley-Hamilton
identity and keep all couplings in order to present the most
general expressions in terms of these parameters. One can
then drop one of the βi involved in the Cayley-Hamilton
identity at any stage of the calculation. Furthermore, one-
loop diagrams from the Lagrangian in eq. (1) contribute
at this order. It is crucial to employ infrared regularization
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in the evaluation of the loop diagrams if one does not im-
plement large Nc counting rules. Otherwise, the inclusion
of η′ loops would spoil the counting scheme and in general
higher loops with an arbitrary number of η′-propagators
will contribute to lower chiral orders. This is similar to
the situation in the relativistic framework of dimension-
ally regularized baryon chiral perturbation theory. Using
infrared regularization allows for a chiral counting scheme
while preserving chiral invariance [16]. The loop diagrams
are usually divergent and must be renormalized by coun-
terterms of arbitrarily high order. This cannot be done in
practice and one neglects these counterterm polynomials
[16]. We will proceed in a similar way, restricting ourselves
to the calculation of the chiral logarithms and checking the
scale dependence of the non-analytic portions of the chi-
ral loops by varying the scale. We will assume that the
divergences have been absorbed by a redefinition of the
LECs and use the same notation for the renormalized cou-
pling constants. In the present calculation this amounts to
keeping only the chiral logarithms of the loops with the
Goldstone bosons. (A more rigorous investigation of renor-
malization is provided within a modified framework in the
subsequent section. The advantage of this approach is that
the complete renormalization of the one-loop function can
be performed.)

The effective Lagrangian at one-loop order quadratic
in the fields η and η′ has the form

L = 1
2∂µη

[
1 + T

(2)
88

]
∂µη

− 1
2η

[
M

(2)
88 − (

M
(2)
08

)2
/M

(0)
00 + M

(4)
88

]
η

+ 1
2∂µη′

[
1 + T

(4)
00 − 3

4

(
K

(2)
00

)2 − (
K

(2)
08

)2

+
(
M

(2)
08

/
M

(0)
00

)2
]
∂µη′

− 1
2η′

[
M

(0)
00 + M

(2)
00 + M

(4)
00 + 2

(
M

(2)
08

)2
/M

(0)
00

−K
(2)
00

(
M

(0)
00 + M

(2)
00

) − 2K
(2)
08 M

(2)
08

+ 1
4

(
K

(2)
00

)2
M

(0)
00

]
η′. (15)

We have not shown the off-diagonal elements proportional
to ηη′ since these do not contribute to the masses at fourth
chiral order. The term T

(2)
88 is the fourth-order correction

arising from one-loop diagrams with a V1(0) vertex and
contact terms from L(4) in eq. (14)

T
(2)
88 =

1
f2

(
24β

(0)
4

◦
m2

8 + 8β
(0)
5

◦
m2

η − ∆K

)
, (16)

with ∆φ =
◦
m2

φ/(16π2) ln(
◦
m2

φ/µ2) and µ the scale intro-
duced in infrared regularization. In order to account for
all contributions to the masses at fourth chiral order, T

(4)
00

must include two-loop diagrams with vertices from L(2),
one-loop graphs from L(4) and contact terms from L(6).
Possible two-loop diagrams are the sunset diagram and
double tadpoles. It turns out that they do not contribute

to the order we are working if infrared regularization is
employed. The only contributions to T

(4)
00 arise from con-

tact terms of L(6) and from one-loop diagrams —tadpoles
in our case— with L(4) vertices. An enumeration of all
possible counterterms in L(6) is beyond the scope of the
present investigation. We will only need terms propor-
tional to Dµη0Dµη0, multiplied by chirally invariant com-
binations of two quark mass matrices. Setting U = 1 the
only two independent combinations are 〈χ〉2 and 〈χ2〉, and
we summarize all contributing terms to T

(4)
00 in the follow-

ing Lagrangian:

L(6) = . . . +
1

2f2

[
γ1(

◦
m2

8)
2 + γ2

(
2(

◦
m2

8)
2 + (

◦
m2

∆)2
)]

·Dµη0D
µη0 + . . . . (17)

Including these terms the results for T
(4)
00 , M

(4)
88 and M

(4)
00

read

T
(4)
00 =

4
f4

(
2β

(0)
0 + 4β

(0)
1 + β

(0)
2 + 2β

(0)
3 − 2

3β4,5,17,18

−3β
(0)
13 − 6β

(0)
14 − 3

2β
(0)
15

)
·(3 ◦

m2
π∆π + 4

◦
m2

K∆K +
◦
m2

η∆η

)
+

1
f2

(
γ1(

◦
m2

8)
2 + γ2(

◦
m2

∆)2
)
,

M
(4)
88 =

1
f2

(− 1
2

◦
m2

π∆π+ 1
3

◦
m2

π∆K − 8
9

◦
m2

K∆η+ 7
18

◦
m2

π∆η

)

+
8
f2

(
6β

(0)
6

◦
m2

η

◦
m2

8 + 3β
(0)
7 (

◦
m2

∆)2

+2β
(0)
8 (

◦
m2

η)2 + β
(0)
8 (

◦
m2

∆)2
)
,

M
(4)
00 =

4
3f4

(−ṽ
(2)
2 − 3v

(2)
1

)(
3

◦
m2

π∆π+4
◦
m2

K∆K +
◦
m2

η∆η

)
+

24
f2

(
2β

(0)
6 −

√
6β

(1)
26 − 3β

(2)
6 + 2β

(0)
7

)
(
◦
m2

8)
2

+
1
f2

(
8β

(0)
8 − 4

√
6β

(1)
25 − 6β

(2)
8 − 3β

(2)
12

)
·(2(

◦
m2

8)
2 + (

◦
m2

∆)2
)
. (18)

The other terms in eq. (15) are higher-order corrections
from the transformation in eq. (12) which were not pre-
sented for the calculation at second chiral order.

The transformations

η →
[
1 − 1

2T
(2)
88

]
η ,

η′ →
[
1 − 1

2T
(4)
00 + 3

8

(
K

(2)
00

)2 +
(
K

(2)
08

)2

− 1
2

(
M

(2)
08

/
M

(0)
00

)2
]
η′ , (19)
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bring the diagonal elements of the kinetic terms into the
canonical form and change the masses

m2
η = M

(2)
88 + M

(4)
88 − T

(2)
88 M

(2)
88 − (

M
(2)
08

)2/
M

(2)
00 ,

m2
η′ = M

(0)
00 + M

(2)
00 + M

(4)
00 − T

(4)
00 M

(0)
00

−K
(2)
00

(
M

(0)
00 + M

(2)
00 − M

(0)
00 K

(2)
00

)
+

(
M

(2)
08 − M

(0)
00 K

(2)
08

)2/
M

(0)
00 . (20)

Substitution of these terms gives

m2
π =

◦
m2

π

[
1 + 8

(
2β

(0)
8 − β

(0)
5

) ◦
m2

π

f2

+24
(
2β

(0)
6 − β

(0)
4

) ◦
m2

8

f2
+

1
2∆π − 1

6∆η

f2

]
,

m2
K =

◦
m2

K

[
1 + 8

(
2β

(0)
8 − β

(0)
5

) ◦
m2

K

f2

+24
(
2β

(0)
6 − β

(0)
4

) ◦
m2

8

f2
+

1
3∆η

f2

]
,

m2
η =

◦
m2

η

[
1 + 8

(
2β

(0)
8 − β

(0)
5

) ◦
m2

η

f2
+ 24

(
2β

(0)
6 − β

(0)
4

) ◦
m2

8

f2

]

+

( ◦
m2

∆

)2

f2

[
8β

(0)
8 + 24β

(0)
7 − 8

(
ṽ
(1)
2

)2

f2 ◦
m2

0

]

+
− 1

2

◦
m2

π∆π + 4
3

◦
m2

K∆K + 7
18

◦
m2

π∆η − 8
9

◦
m2

K∆η

f2
,

m2
η′ =

◦
m2

η′ +
8

◦
m2

8

( ◦
m2

0 −
◦
m2

η′
)
β4,5,17,18

f2

+
8
( ◦
m2

∆

)2(
ṽ
(1)
2 − 2

◦
m2

0β5,18

)2

f4 ◦
m2

0

+
3

◦
m2

π∆π + 4
◦
m2

K∆K +
◦
m2

η∆η

f4

[
− 4

3 ṽ
(2)
2 − 4v

(2)
1

+ 8
3

◦
m2

0β4,5,17,18 +
◦
m2

0

( − 8β
(0)
0 − 16β

(0)
1

−4β
(0)
2 − 8β

(0)
3 + 12β

(0)
13 + 24β

(0)
14 + 6β

(0)
15

)]
+

(
48β

(0)
6 − 24

√
6β

(1)
26 − 72β

(2)
6 + 48β

(0)
7 − ◦

m2
0γ1

)
·
( ◦
m2

8

)2

f2
+

2
( ◦
m2

8

)2 +
( ◦
m2

∆

)2

f2

·(8β
(0)
8 − 4

√
6β

(1)
25 − 6β

(2)
8 − 3β

(2)
12 − ◦

m2
0γ2

)
. (21)

This completes the calculation of the η and η′ masses up
to fourth chiral order. In [15] it was assumed that the η-η′
mixing follows the one-mixing-angle scheme and some of
the terms in eq. (20) have been neglected. (This was suffi-
cient in order to establish infrared regularized U(3) chiral

perturbation theory, and the main purpose of this paper
was to show that the chiral series for the masses and decay
constants converge faster than in the dimensionally regu-
larized theory.) A rigorous treatment of the masses up to
fourth chiral order, however, requires the transformation
(η8, η0)T = (1 + R(2) + R(4))(η, η′)T , with

1 + R(2) =

(
1 − 1

2T
(2)
88 M

(2)
08

/
M

(0)
00 − K

(2)
08

−M
(2)
08

/
M

(0)
00 1 − 1

2K
(2)
00

)
, (22)

where we have presented only the terms up to second chi-
ral order for brevity. (The fourth-order terms only give
contributions to mη′ and scattering processes involving
several η′.) This generalizes eq. (12), and the entries of
R(2) are given by

R(2)
π =

(−12
◦
m2

8β
(0)
4 − 4

◦
m2

πβ
(0)
5 + 1

3∆π + 1
6∆K

)
/f2 ,

R
(2)
K =

(−12
◦
m2

8β
(0)
4 −4

◦
m2

Kβ
(0)
5 + 1

8∆π+ 1
4∆K + 1

8∆η

)
/f2 ,

R
(2)
8η =

(−12
◦
m2

8β
(0)
4 − 4

◦
m2

ηβ
(0)
5 + 1

2∆K

)
/f2 ,

R
(2)
8η′ = 2

√
2

◦
m2

∆

(
2

◦
m2

0β5,18 − ṽ
(1)
2

)/
f2 ◦

m2
0 ,

R
(2)
0η = 2

√
2

◦
m2

∆ṽ
(1)
2

/
f2 ◦

m2
0 ,

R
(2)
0η′ = −4

◦
m2

8β4,5,17,18/f2 , (23)

where the expressions for the pions and kaons have been
included for completeness. The matrix R(2) constitutes
one of our main results since it will be needed in all one-
loop calculations.

3.1 Renormalization

From the above formulas it becomes apparent that η′
loops do not contribute at this order in infrared regular-
ization. The tadpole which is the only one-loop graph in
the present investigation vanishes in the case of the η′. A
similar observation is made in [19] where both tadpoles
and chiral unitarity corrections have been evaluated for
the hadronic decay η′ → ηππ. Employing infrared regular-
ization, loops with an η′ contribute at higher orders than
pure Goldstone boson loops. For the processes considered
so far the infrared physics stemming from the propaga-
tion of an η′ inside the loop is suppressed by one chiral
order and therefore beyond the working accuracy of [19]
and the present investigation. At this order it is therefore
equivalent to a scheme in which the η′ is not taken into
account at all in loops but rather treated first as a back-
ground field. Only Goldstone boson loops occur within
this approach and they are calculated employing dimen-
sional regularization. After the evaluation of the loops the
η′ field can be dealt with as a propagating field. The main
advantage of such a framework is given by the complete
renormalization of the one-loop functional which cannot
be undertaken in infrared regularization since it involves
the renormalization of counterterms of infinite order. In
addition to being an alternative approach for describing
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η′ physics at low energies it provides a check on the renor-
malization of the Goldstone boson integrals in infrared
regularization.

In the appendices, we present a list of all operators of
the fourth-order Lagrangian and the complete renormal-
ization of the one-loop functional of the Goldstone bo-
son loops. We would like to point out that our results for
the renormalization differ substantially from those in [14]
since within this work the authors treated the η′ on the
same footing as the Goldstone bosons and included the η′
inside loops.

4 Results

The decay constant f is taken to be 88MeV, the value
of the pion decay constant in the chiral limit [20]. The
quark mass matrix is chosen to fit

◦
mπ = 138MeV and

◦
mK = 496MeV. We take the values of β

(0)
i = β

SU(3)
i

from ordinary SU(3) chiral perturbation theory [21] unless
stated otherwise.

4.1 Masses

First we investigate the mass of the η′ at second chiral
order in eq. (13)

◦
m2

η′ =
◦
m2

0 +
4
f2

◦
m2

8

(
ṽ
(2)
2 − 2

◦
m2

0β4,5,17,18

)
. (24)

The phenomenological values for β
(0)
17 and β

(0)
18 are not

known, but they are OZI-violating corrections to β
(0)
5 . As-

suming that they are suppressed at the scale µ = mρ, i.e.
|β(0)

17 (mρ)|, |β(0)
18 (mρ)| � |β(0)

5 (mρ)|, we can roughly esti-
mate β4,5,17,18 ≈ 0.5 × 10−3. However, this result is very
sensitive to the scale at which the OZI rule has been ap-
plied: at µ = mη it yields β4,5,17,18 ≈ 2.0 × 10−3.

In order to obtain a bound for β4,5,17,18, we will con-
sider the dependence of

◦
m2

η′ on
◦
m2

0. We assume that

the proportionality factor (1−8β4,5,17,18
◦
m2

8/f2) converges
reasonably fast, i.e., that the second term is at most a
25% correction to the leading order. This gives the limit
|β4,5,17,18| < 1.5 × 10−3.

Next we assume 0 < ṽ
(2)
2 < 1

2f2 in agreement with
large Nc considerations and solve

◦
mη′ = 958MeV for

◦
m0. Under the above assumptions, this is possible only
if 650MeV <

◦
m0 < 1.1GeV. These bounds agree with

those found in [22]. Using the value for the topological
susceptibility given within this work which corresponds to
v
(2)
0 = 0.003174GeV4 in our framework, we obtain

◦
m0 =

905MeV (
◦
m2

0 = 857MeV) for f = 88MeV (f = 93MeV).
The masses for the octet from eq. (21) are exactly the

same as in SU(3) perturbation theory provided the LECs
are related by β

(0)
k = β

SU(3)
k for k = 4, 5, 6, 8 and

β
SU(3)
7 = β

(0)
7 −

(
ṽ
(1)
2

)2

3f2 ◦
m2

0

. (25)

This is in agreement with the results from [23,24]. In
[23] the η′ field was integrated out explicitly to match
the LECs to their SU(3) values. Note that within the
approach of large Nc chiral perturbation theory, v

(1)
3 is

of higher order and does not appear at the order con-
sidered there. The phenomenological value of β

SU(3)
7 =

(−0.35± 0.2)× 10−3 may be saturated completely by the
additional term in eq. (25).

4.2 Decay constants

Phenomenologically the η-η′ mixing can be extracted from
the pseudoscalar decays. The decay constants Fkl are de-
fined by the processes 〈0|Al

µ|φk〉 = ipµFkl. At lowest order
the decay constants are Fkl = fδkl for the octet and

Fη′0 = f0 =

√
6λ

(
f2 + 6v

(0)
5

)
f2

(26)

for the singlet. At next-to-leading order there are also off-
diagonal decay constants where mixing effects appear. The
mixing will be parametrized by

(Fη8, Fη′8) = F8(cos ϑ8, sin ϑ8),

(Fη0, Fη′0) = F0(− sin ϑ0, cos ϑ0), (27)

while no other mixing occurs among the decay constants
in the isospin limit mu = md.

In this section we need a few more operators from
the fourth-order Lagrangian (14), namely Ok with k =
46, 47, 52, 53. We find the decay constants at next-to-
leading order in a similar way as the masses in sect. 3:

Fπ = f
[
1 + 12β

(0)
4

◦
m2

8

f2
+ 4β

(0)
5

◦
m2

π

f2
− ∆π + 1

2∆K

f2

]
,

FK = f
[
1 + 12β

(0)
4

◦
m2

8

f2
+ 4β

(0)
5

◦
m2

K

f2

−
3
8∆π + 3

4∆K + 3
8∆η

f2

]
,

Fη8 = f
[
1 + 12β

(0)
4

◦
m2

8

f2
+ 4β

(0)
5

◦
m2

η

f2
−

3
2∆K

f2

]
,

Fη′8 = −2
√

2
◦
m2

∆ṽ
(1)
2

◦
m2

0f
,

Fη0 =
2
√

2
◦
m2

∆

f2

[
f0ṽ

(1)
2

◦
m2

0

−
√

6λ
(
2β5,18 + 3β

(0)
46 + 3β

(0)
53

)]
,

Fη′0 = f0 +
4

◦
m2

8(2
√

6λ − f0)β4,5,17,18

f2

+

√
6λ

◦
m2

8

f2

(
12β

(0)
46 + 36β

(0)
47 − 12β

(0)
53 − 6

√
6β

(1)
52

)
. (28)
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In second order the two decay amplitudes F8, F0 are given
by F8 = Fη8 and F0 = Fη′0, while the angles ϑ8, ϑ0 are

ϑ8 = −2
√

2
◦
m2

∆
◦
m2

0f
2

ṽ
(1)
2 ,

ϑ0 = ϑ8 +
2
√

2
◦
m2

∆

f2 + 6v
(0)
5

(
2β5,18 + 3β

(0)
46 + 3β

(0)
53

)
. (29)

This is the leading-order contribution to the mixing angles
and both angles differ. Phenomenological values for the
angles have been given, e.g. in [12]: ϑ8 = −21.2◦, ϑ0 =
−9.2◦.

4.3 Fit

We will use the above equations to fit some of the param-
eters. To be more precise, we use the mass formula of the
η′ at second chiral order, the mixing angle ϑ8 and assume
the complete saturation of β

SU(3)
7 due to η-η′ mixing (i.e.

β
(0)
7 ≈ 0) in order to obtain values for the parameters
◦
m2

0, ṽ
(1)
2 and β4,5,17,18. The 1/Nc estimate for ṽ

(2)
2 reads

ṽ
(2)
2 ≈ 2ṽ

(1)
2 − 1

4f2. Taking the values
◦
mη′ = 958MeV and

ϑ8 = −21.2◦, the resulting parameters are

◦
m0 = 847MeV , ṽ

(1)
2 = 1.25 × 1

4f2 ,

β4,5,17,18 = 0.47 × 10−3 . (30)

These values are all in the expected ranges, however, they
depend heavily on our assumptions: A change in

◦
mη′ by

10MeV, e.g., requires β4,5,17,18 to change by −0.15×10−3,
whereas a change in ϑ8 by 1◦ or in β7 by 0.05×10−3 results
in the changes

◦
m0 : + 6MeV , ṽ

(1)
2 : +0.10 × 1

4f2 ,

β4,5,17,18 : + 0.33 × 10−3 ,

◦
m0 : + 59MeV , ṽ

(1)
2 : +0.18 × 1

4f2 ,

β4,5,17,18 : + 1.08 × 10−3 . (31)

The value for
◦
m0 is in agreement with the result given

in [22].
At fourth chiral order the evaluation of the η′ mass

is rendered more difficult due to the proliferation of new
counterterms. We will therefore make the following rough
estimate by neglecting the unknown OZI-violating cou-
plings and keeping only the known parameters. The terms
of fourth chiral order for mη′ in eq. (21) are then—in or-
der of appearance—corrections of about −1%, 2.5%, 40%,
2%, 7% relatively to

◦
mη′ . The loop term delivers by far the

greatest contribution but is highly scale dependent. This
can be seen immediately, e.g., by noting that the prefactor
3

◦
m2

π∆π + 4
◦
m2

K∆K +
◦
m2

η∆η vanishes at a scale of about
µ = 520MeV. The counterterms included in γ1 and γ2

which cancel this scale dependence will therefore also vary

strongly with µ and might lead to sizeable contributions
depending on the choice for µ. In order to confine their
approximate size, one must consider further processes in-
volving these couplings.

5 Conclusions

In this investigation we have presented η-η′ mixing up to
one-loop order in the context of the masses and decay con-
stants of the η-η′ system. We worked in the framework of
infrared regularized U(3) chiral perturbation theory which
permits a strict chiral counting scheme without employing
large Nc counting rules. We treat the η′ as a massive state,
whereas it is considered to be a small quantity in large Nc

chiral perturbation theory. It turns out that even at lead-
ing order the η and η′ fields do not follow the usually as-
sumed one-mixing-angle scheme. Already at tree level the
mixing of these states cannot be parametrized by just one
single angle which is in contradistinction to large Nc chiral
perturbation theory where one mixing angle is sufficient at
lowest order. In this framework the physical fields η and η′
are related to the pure octet and singlet states, η8 and η0,
via a matrix which includes at leading order the parame-
ter combinations ṽ

(1)
2 , β5,18 and β4,5,17,18 as well as

◦
m0, the

η′ mass in the chiral limit of vanishing quark masses, see
eq. (12). As an immediate consequence, matrix elements
involving η and η′ fields will include these parameter com-
binations and can be used to extract their numerical values
by comparison with experimental data. The pseudoscalar
decays, e.g., are suited to obtain reasonable estimates for
the couplings and a fit to the two angles ϑ8 and ϑ0 can
be easily accommodated as shown in the preceding sec-
tion. However, using the results from eq. (29), we can turn
the argument around and obtain a rough estimate for ϑ8

and ϑ0. To this end, we assume that the values of the
1/Nc suppressed couplings are negligible, i.e. in particu-
lar |v(0)

5 | � f2/4, and |β(0)
18 |, |β(0)

46 |, |β(0)
53 | � |β(0)

5 |, hence
generalizing our approximation for the OZI-violating con-
tributions made in the last section. The parameter β

(0)
5

itself is phenomenologically determined by the ratio [24,
21]

FK

Fπ
= 1 + 4(m2

K − m2
π)

β
(0)
5

f2
+

5
8f2

∆π

− 1
4f2

∆K − 3
8f2

∆η ≈ 1.22 . (32)

Using f = 88MeV yields the value β
(0)
5 = 1.3×10−3 which

is consistent with [21]. With these rough assumptions, we
obtain

ϑ0 − ϑ8 =
16
√

2(m2
K − m2

π)
3f2

β
(0)
5 = 16.4◦ , (33)

which slightly overestimates, e.g., the phenomenological
extraction of [12]. This indicates that other contributions
such as the neglected LECs from eq. (29) or higher orders
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may modify our estimate for ϑ0 − ϑ8; nevertheless, the
two angles differ considerably. The result is similar to the
one obtained in [9]. Note, however, that within the present
scheme, this is the leading contribution, while in the com-
bined chiral and 1/Nc expansion the difference of the two
angles starts at subleading order and the form as given in
eq. (33) corresponds even to next-to-next-to-leading order.

The phenomenological determination of η-η′ mixing
from photonic decays of the η and η′ should yield a more
reliable value. The lowest-order contribution to these de-
cays originates from the anomalous Wess-Zumino-Witten
term which is of fourth chiral order. In order to pin down
the values of the two angles accurately, one must calculate
SU(3) breaking corrections to the Wess-Zumino-Witten
term which are of sixth chiral order and beyond the scope
of the present investigation.

Under reasonable assumptions for the parameters of
the η′ mass at second chiral order, we were able to ob-
tain a range for

◦
m0: 650MeV <

◦
m0 < 1.1GeV, i.e. in our

approach it is in principle possible that the η′ mass contri-
bution due to the axial U(1) anomaly can be larger than
the physical mass of 958MeV and is lowered by leading-
order symmetry-breaking terms. Comparing the mixing
angle ϑ8 with phenomenological analyses, and assuming
that β

SU(3)
7 is completely saturated by the η′ resonance,

we were able to disentangle two of the parameters: ṽ
(1)
2 ,

which is predominantly responsible for η-η′ mixing and
◦
m0 ≈ 850MeV. This value for

◦
m0 is in agreement with

other analyses (see, e.g., [22]) and it shows that the satu-
ration of β

SU(3)
7 was a consistent assumption.

The mass
◦
m2

0 is given by
◦
m2

0 = 2v
(2)
0 /f2, see eq. (10),

a well-known result [25]. In the large Nc limit v
(2)
0 co-

incides with 3τGD, where τGD is the topological suscep-
tibility of Gluodynamics. It represents the mean-square
winding number per unit volume of Euclidean space

τGD ≡
∫

d4x〈0|Tω(x)ω(0)|0〉GD , (34)

with

ω =
g2

16π2
tr GµνG̃µν . (35)

The uncertainty in
◦
m0 translates immediately into a range

for τGD

0.55 × 10−3 GeV4 < τGD < 1.56 × 10−3 GeV4 . (36)

However, some of the results are rather sensitive to the
assumptions made for the parameters. A further study of
the η-η′ system, such as their hadronic decay modes as
well as the anomalous decays, should yield more reliable
values for some parameters and the mixing angles as they
appear in the parametrization of the pseudoscalar decay
constants for the η and η′ [19].

We would like to thank Stefan Wetzel for reading the
manuscript. This work is supported in part by the DFG.

Appendix A. Fourth-order operators

We use the standard definitions of chiral perturbation the-
ory

FL
µν = ∂µ l̃ν − ∂ν l̃µ − i[l̃µ, l̃ν ] ,

FR
µν = ∂µr̃ν − ∂ν r̃µ − i[r̃µ, r̃ν ] ,

χ = 2B(s + ip) , (A.1)

where U is a unitary matrix containing the meson fields.
The fields s, p, vµ = 1

2 (r̃µ + l̃µ) and ãµ = 1
2 (r̃µ − l̃µ) are

the external sources that couple to the QCD Lagrangian.
The singlet axial-vector source 〈ãµ〉 has been rescaled to
account for the dependence on the running QCD scale,
eq. (4).

We make use of the following abbreviations for the
definition of the fourth-order Lagrangian:

Cµ = U†DµU ,

Tµ = iDµθ ,

M = U†χ + χ†U ,

N = U†χ − χ†U ,

F±
µν = FL

µν ± U†FR
µνU . (A.2)

The fourth-order operators Ok are given in table 1 and
the fourth-order Lagrangian

L(4) =
∑

k βkOk (A.3)

is a sum of these operators coupled with functions βk of
the invariant η0 +

√
λ θ, which can be expanded as in

eq. (5).
In standard SU(3) (U(3)) chiral perturbation theory

the fourth-order Lagrangian consists of all possible fourth-
order operators with coupling constants (functions in η0 +√

λ θ) not fixed by chiral symmetry. In total there are 13
(58) independent fourth-order operators, one of which can
be eliminated by the Cayley-Hamilton identity for nl = 3
light flavors. The equation of motion for the meson fields
has been used extensively in order to eliminate operators
involving the divergence DµCµ.

In the renormalization scheme presented in Appendix
B, we will treat the η0 as a background field that is not
restricted by an equation of motion. To this end, we need
to include additional operators involving 〈DµCµ〉. To sec-
ond order the only new counterterm is proportional to
〈DµCµ〉 which is a total divergence and equivalent to op-
erators already present in the second-order Lagrangian. It
can therefore be omitted. At fourth order, however, new
operators must be included which have not been consid-
ered in previous approaches. The eight additional coun-
terterms read

O58 = i〈DµCµ〉〈CνCν〉, O59 = i〈DµCµ〉〈Cν〉〈Cν〉,
O60 = i〈DµCµ〉〈Cν〉Tν , O61 = i〈DµCµ〉T νTν ,

O62 =〈DµCµ〉〈DνCν〉, O63 =〈DµCµ〉DνTν ,

O64 = i〈DµCµ〉〈M〉, O65 =〈DµCµ〉〈N〉.
(A.4)
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Table 1. Fourth-order operators in U(3) ChPT [17].

O 0 = 〈CµCνCµCν〉, O 1 = 〈CµCµ〉〈CνCν〉,
O 2 = 〈CµCν〉〈CµCν〉, O 3 = 〈CµCµCνCν〉,
O13 = −〈Cµ〉〈CµCνCν〉, O14 = −〈Cµ〉〈Cµ〉〈CνCν〉,
O15 = −〈Cµ〉〈Cν〉〈CµCν〉, O16 = 〈Cµ〉〈Cµ〉〈Cν〉〈Cν〉,
O 4 = −〈CµCµ〉〈M〉, O 5 = −〈CµCµM〉,
O17 = 〈Cµ〉〈Cµ〉〈M〉, O18 = −〈Cµ〉〈CµM〉,
O21 = 〈CµCµiN〉, O22 = 〈CµCµ〉〈iN〉,
O23 = 〈Cµ〉〈CµiN〉, O24 = 〈Cµ〉〈Cµ〉〈iN〉,
O 6 = 〈M〉〈M〉, O 7 = 〈N〉〈N〉,
O 8 = 1

2
〈MM + NN〉, O12 = 1

4
〈MM − NN〉,

O25 = 〈iMN〉, O26 = 〈M〉〈iN〉,
O 9 = i〈CµCνF µν

+ 〉, O27 = 〈Cµ〉〈CνF µν
− 〉,

O29 = iεµνρσ〈CµCνF ρσ
+ 〉, O30 = εµνρσ〈Cµ〉〈CνF ρσ

− 〉,
O10 = 1

4
〈F µν

+ F+
µν − F µν

− F−
µν〉, O11 = 1

2
〈F µν

+ F+
µν + F µν

− F−
µν〉,

O20 = 1
4
〈F µν

+ 〉〈F+
µν〉 − 1

4
〈F µν

− 〉〈F−
µν〉, O19 = 1

2
〈F µν

+ 〉〈F+
µν〉 + 1

2
〈F µν

− 〉〈F−
µν〉,

O28 = 1
4
εµνρσ〈F µν

+ F ρσ
+ − F µν

− F ρσ
− 〉,

O31 = T µ〈CµCνCν〉, O32 = T µ〈Cµ〉〈CνCν〉,
O33 = T µ〈CµCν〉〈Cν〉, O34 = T µ〈Cµ〉〈Cν〉〈Cν〉,
O35 = T µTµ〈CνCν〉, O37 = T µTµ〈Cν〉〈Cν〉,
O36 = T µT ν〈CµCν〉, O38 = T µT ν〈Cµ〉〈Cν〉,
O39 = T µTµT ν〈Cν〉, O40 = T µTµT νTν ,

O41 = iDµTµ〈CνCν〉, O42 = iDµTµ〈Cν〉〈Cν〉,
O43 = iDµTµT ν〈Cν〉, O44 = iDµTµT νTν ,

O45 = DµTµDνTν ,

O46 = T µ〈CµM〉, O47 = T µ〈Cµ〉〈M〉,
O48 = T µ〈CµiN〉, O49 = T µ〈Cµ〉〈iN〉,
O50 = T µTµ〈M〉, O51 = T µTµ〈iN〉,
O52 = iDµTµ〈M〉, O53 = DµTµ〈N〉,
O54 = Tµ〈CνF µν

− 〉, O55 = Tµ〈Cν〉〈F µν
− 〉,

O56 = −εµνρσT µ〈CνF ρσ
− 〉, O57 = −εµνρσT µ〈Cν〉〈F ρσ

− 〉.

These operators are needed as long as the phase of U
which describes the singlet field is treated as a background
field. When subsequently the phase of U is dealt with as a
propagating field, its equation of motion [17] may be used
to eliminate the new operators. The amplitudes are then
renormalizable only on-shell, but if one prefers to keep the
new operators instead, they are renormalizable even if the
η′ field is off-shell. We have confirmed this property for a
number of amplitudes.

Appendix B. Renormalization

In this section, we work out the renormalization of the one-
loop functional of the Goldstone boson loops proceeding
along the lines of [17] and using their notation. We will
sketch the method briefly and highlight the differences
since the details can be found in [17,24]. The alternative
treatment of the singlet field within our approach yields
substantially different results. In the scheme of [17] the
singlet is a quantum field, whereas we treat it is as an

external field which does not propagate so that we can
restrict ourselves to SU(3) instead of U(3) matrices and
relations. The results of this appendix can be used as a
check for the infrared regularized loop contributions in the
present investigation since the η′ does not appear inside
loops at the order we are working. The employed SU(3)
relations are

λaAλa = 2〈A〉 − (2/nl)A,

〈λaA〉〈λaB〉 = 2〈AB〉 − (2/nl)〈A〉〈B〉.
In the scheme of [24], on the other hand, the singlet field is
not included explicitly but the methodology to extract the
divergences is equivalent. Omitting in the present investi-
gation the external singlet field contributions reproduces
the results of [24].

We start by introducing a background field Ū ∈ U(3)
which obeys the equation of motion for the octet whereas
its phase is arbitrary. The matrix U is decomposed as
U = Ū exp(i∆) with quantum fluctuations ∆ ∈ SU(3).
The second-order chiral Langrangian expanded up to two
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powers of ∆ reads

L(U) = L(Ū) + V1(X)〈Dµ∆Dµ∆〉 + V1(X)〈Cµ[∆,Dµ∆]〉
− 1

2V2(X)〈∆2M〉 − 1
2 iV3(X)〈∆2N〉, (B.1)

with Dµ∆ = ∂µ∆ − i[lµ,∆] and the invariant quantity
X = 〈log Ū〉+ i(

√
6λ/f)θ = i

√
6(η0 +

√
λ θ)/f . The terms

linear in ∆ vanish upon using the equation of motion and
we drop the piece L(Ū) which does not depend on the
quantum fluctuations ∆. Equation (B.1) corresponds to
eq. (21) in [17] when all terms proportional to 〈∆〉 are
neglected since they vanish for ∆ ∈ SU(3). We then set
∆ = ϕaλa/2

√
V1 to obtain canonically normalized kinetic

terms for the octet ϕ. After partial integration and com-
pletion of a square, the Lagrangian becomes

L = 1
2dµϕadµϕa − 1

2ϕaσabϕb. (B.2)

The connection ω of dµϕa = ∂µϕa + ωab
µ ϕb, the curvature

R thereof and the mass term σ read

ωab
µ = 1

2 i
〈
ωµ[λa, λb]

〉
,

Rab
µν = 1

2 i
〈
Rµν [λa, λb]

〉
,

ωµ = lµ + 1
2 iCµ ,

Rµν = 1
2FL

µν + 1
2U†FR

µνU − 1
4 i[Cµ, Cν ] ,

σab = 1
8

〈
[Cµ, λa][Cµ, λb]

〉
+ 1

8

〈
(ω2M + iω3N){λa, λb}〉 + δabS,

S = − 1
2ω′′

1∂µX∂µX + 1
4ω′

1ω
′
1∂

µX∂µX

− 1
2ω′

1∂
µ∂µX, (B.3)

where we have supressed the bars in Ū and in the related
quantities of eq. (A.2). The functions ωk, ω′

1 and ω′′
1 are

defined as the quotients Vk/V1, V ′
1/V1 and V ′′

1 /V1, respec-
tively. Note that the derivate V ′

i is defined as in [17] as

V ′
1 =

∂V1

∂X
=

1
i
√

6
∂V1

∂(η0/f)
, (B.4)

in comparison to eq. (5). The differences to eqs. (27-30)
in [17] stem from the modified algebra.

Taking the fields ϕ as quantum fields, whereas Ū ,X are
external fields, we calculate the one-loop effective action.
The divergent piece in dimensional regularization at d = 4
is

Γ

(4π)2(4 − d)
, Γ = 1

12Rµν
ab Rba

µν + 1
2σabσba . (B.5)

After some algebra we obtain Γ expressed in terms of
the 58 known and 8 new fourth-order operators (cf. Ap-

pendix A)

Γ =
1
48

(
nlO0 + 3O1 + 6O2 + 2nlO3 + 12O13

)
+

1
24

(
2nlO9 − 2nlO10 − nlO11 + O19 + 2O20

)
+

1
8
( − ω2O4 + nlω2O5 − 2ω2O18 − nlω3O21

−ω3O22 + 2ω3O23

)
+

n2
l + 2
16n2

l

(
ω2ω2O6 + ω3ω3O7 + 2ω2ω3O26

)

+
n2

l − 4
16nl

(
(ω2ω2 − ω3ω3)O8 + (ω2ω2 + ω3ω3)O12

+2ω2ω3O25

)
+

ω′
1ω

′
1 − 2ω′′

1

8
(
nlO14 + O∗

16 − 2nlO32 + 2O∗
34

−nlO35 + O∗
37

)
+

(n2
l − 1)(ω′

1ω
′
1 − 2ω′′

1 )
8nl

(
ω2(O17 + 2O47 + O50)

+ω3(O24 + 2O49 + O51)
)

+
iω′

1

4
( − nlO41 + O∗

42 − nlO58 + O∗
59

)
+

(n2
l − 1)iω′

1

4nl

(
ω2O52 − ω3O53 + ω2O64 − ω3O65

)

+
(n2

l − 1)(ω′
1ω

′
1 − 2ω′′

1 )2

32
(
O∗

16 + 4O∗
34 + 2O∗

37

+4O38 + 4O39 + O40

)
+

(n2
l − 1)iω′

1(ω
′
1ω

′
1 − 2ω′′

1 )
8

( − O∗
42 − 2O43

−O44 − O∗
59 − 2O60 − O61

)
+

(n2
l − 1)ω′

1ω
′
1

8
(
O45 + O62 + 2O63

)
. (B.6)

The divergence of the one-loop effective action needs to
be cancelled by counterterms in the coupling functions of
the fourth-order operators. The corresponding renormal-
ization functions can be read off from the coefficients of
the operators in Γ . For convenience the operators which
appear twice are marked by ∗.

The structure of Γ equals that of standard SU(3) chi-
ral perturbation theory if ω2 = 1, ω3 = ω′

1 = ω′′
1 = 0

and all non-standard operators ignored. For nl = 3 the
Cayley-Hamilton matrix identity can be used to shuffle
the coefficient of O0 to those of Ok with k = 1, 2, 3 (and
13, 14, 15, 16). The result for Γ has been confirmed by cal-
culating four point amplitudes such as η′η′ → η′η′ scat-
tering. After performing the renormalization prescription
as given by eq. (B.6), the amplitudes were rendered finite
and independent of the scale µ introduced in dimensional
regularization.
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